Abstract
Neighborhood preserving embedding (NPE) is a linear approximation to the locally linear embedding algorithm which can preserve the local neighborhood structure on the data manifold. However, in typical face recognition where the number of data samples is smaller than the dimension of data space, it is difficult to directly apply NPE to high dimensional matrices because of computational complexity. Moreover, in such case, NPE often suffers from the singularity problem of eigenmatrix, which makes the direct implementation of the NPE algorithm almost impossible. In practice, principal component analysis or singular value decomposition is applied as a preprocessing step to attack these problems. Nevertheless, this strategy may discard dimensions that contain important discriminative information and the eigensystem computation of NPE could be unstable. Towards a practical dimensionality reduction method for face data, we develop a new scheme in this paper, namely, the complete neighborhood preserving embedding (CNPE). CNPE transforms the singular generalized eigensystem computation of NPE into two eigenvalue decomposition problems. Moreover, a feasible and effective procedure is proposed to alleviate the computational burden of high dimensional matrix for typical face image data. Experimental results on the ORL face database and the Yale face database show that the proposed CNPE algorithm achieves better performance than other feature extraction methods, such as Eigenfaces, Fisherfaces and NPE, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.