Abstract

In recent years, the global pandemic of bat-associated pathogens has led to increasing attention on bat ectoparasites. Numerous studies have identified human-associated pathogens in Nycteribiidae, indicating their potential as vectors. In this study, the first complete sequencing of the mitochondrial genome of Nycteribia allotopa Speiser, 1901 was sequenced and analyzed. We also compared the mitochondrial sequences of N. allotopa with those available in the database for other Nycteribiidae species. The complete mitochondrial genome of N. allotopa was found to be 15,161bp in size with an A+T content of 82.49%. Nucleotide polymorphism analysis of 13 protein-coding genes from five species of Nycteribiidae showed that nad6 exhibited the most significant variation, while cox1 was the most conserved. Furthermore, selection pressure analysis revealed cox1 to exhibit the strongest purifying selection, while atp8, nad2, nad4L, and nad5 showed slightly looser purifying selection. Pairwise genetic distances indicated that cox1 and cox2 were evolving comparatively slowly, whereas atp8, nad2, and nad6 were evolving comparatively quickly. Phylogenetic trees constructed using Bayesian inference and maximum likelihood methods demonstrated that all four families within the superfamily Hippoboscoidea clustered into one branch each, indicating their monophyly. N. allotopa was found to be most closely related to the same genus N. parvula. This study significantly enriches the molecular database for Nycteribiidae and provides invaluable reference data for future species identification, phylogenetic analysis, and exploration of their potential as vectors for human-associated pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call