Abstract

BackgroundThe crown-of-thorns starfish, Acanthaster planci (L.), has been blamed for coral mortality in a large number of coral reef systems situated in the Indo-Pacific region. Because of its high fecundity and the long duration of the pelagic larval stage, the mechanism of outbreaks may be related to its meta-population dynamics, which should be examined by larval sampling and population genetic analysis. However, A. planci larvae have undistinguished morphological features compared with other asteroid larvae, hence it has been difficult to discriminate A. planci larvae in plankton samples without species-specific markers. Also, no tools are available to reveal the dispersal pathway of A. planci larvae. Therefore the development of highly polymorphic genetic markers has the potential to overcome these difficulties. To obtain genomic information for these purposes, the complete nucleotide sequences of the mitochondrial genome of A. planci and its putative sibling species, A. brevispinus were determined and their characteristics discussed.ResultsThe complete mtDNA of A. planci and A. brevispinus are 16,234 bp and 16,254 bp in size, respectively. These values fall within the length variation range reported for other metazoan mitochondrial genomes. They contain 13 proteins, 2 rRNA, and 22 tRNA genes and the putative control region in the same order as the asteroid, Asterina pectinifera. The A + T contents of A. planci and A. brevispinus on their L strands that encode the majority of protein-coding genes are 56.3% and 56.4% respectively and are lower than that of A. pectinifera (61.2%). The percent similarity of nucleotide sequences between A. planci and A. brevispinus is found to be highest in the CO2 and CO3 regions (both 90.6%) and lowest in ND2 gene (84.2%) among the 13 protein-coding genes. In the deduced putative amino acid sequences, CO1 is highly conserved (99.2%), and ATP8 apparently evolves faster any of the other protein-coding gene (85.2%).ConclusionThe gene arrangement, base composition, codon usage and tRNA structure of A. planci are similar to those of A. brevispinus. However, there are significant variations between A. planci and A. brevispinus. Complete mtDNA sequences are useful for the study of phylogeny, larval detection and population genetics.

Highlights

  • The crown-of-thorns starfish, Acanthaster planci (L.), has been blamed for coral mortality in a large number of coral reef systems situated in the Indo-Pacific region

  • Complete mtDNA sequences are useful for the study of phylogeny, larval detection and population genetics

  • General Features The complete mtDNA sequences of A. planci and A. brevispinus are 16,234 bp and 16,254 bp in size, respectively; both fit within the length variation range reported for other metazoan mitochondrial genomes [9]

Read more

Summary

Introduction

The crown-of-thorns starfish, Acanthaster planci (L.), has been blamed for coral mortality in a large number of coral reef systems situated in the Indo-Pacific region. A. planci larvae have undistinguished morphological features compared with other asteroid larvae, it has been difficult to discriminate A. planci larvae in plankton samples without species-specific markers. The crown-of-thorns starfish, Acanthaster planci (L.), is a typical reef coral predator, which sometimes causes population outbreaks and destroys coral reef communities. The activities of this starfish have been responsible for causing extensive coral mortality in a large number of coral reef systems throughout the Indo-Pacific region [1]. Once the unpredictable primary outbreak occurs, this large population of adult A. planci that reproduces enormous amounts of eggs can lead to secondary outbreaks

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call