Abstract

BackgroundMitochondrial DNA sequences are extensively used as genetic markers not only for studies of population or ecological genetics, but also for phylogenetic and evolutionary analyses. Complete mt-sequences can reveal information about gene order and its variation, as well as gene and genome evolution when sequences from multiple phyla are compared. Mitochondrial gene order is highly variable among mollusks, with bivalves exhibiting the most variability. Of the 41 complete mt genomes sequenced so far, 12 are from bivalves. We determined, in the current study, the complete mitochondrial DNA sequence of Crassostrea hongkongensis. We present here an analysis of features of its gene content and genome organization in comparison with two other Crassostrea species to assess the variation within bivalves and among main groups of mollusks.ResultsThe complete mitochondrial genome of C. hongkongensis was determined using long PCR and a primer walking sequencing strategy with genus-specific primers. The genome is 16,475 bp in length and contains 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 22 transfer tRNA genes (including a suppressor tRNA gene), and 2 ribosomal RNA genes, all of which appear to be transcribed from the same strand. A striking finding of this study is that a DNA segment containing four tRNA genes (trnk1, trnC, trnQ1 and trnN) and two duplicated or split rRNA gene (rrnL5' and rrnS) are absent from the genome, when compared with that of two other extant Crassostrea species, which is very likely a consequence of loss of a single genomic region present in ancestor of C. hongkongensis. It indicates this region seem to be a "hot spot" of genomic rearrangements over the Crassostrea mt-genomes. The arrangement of protein-coding genes in C. hongkongensis is identical to that of Crassostrea gigas and Crassostrea virginica, but higher amino acid sequence identities are shared between C. hongkongensis and C. gigas than between other pairs. There exists significant codon bias, favoring codons ending in A or T and against those ending with C. Pair analysis of genome rearrangements showed that the rearrangement distance is great between C. gigas-C. hongkongensis and C. virginica, indicating a high degree of rearrangements within Crassostrea. The determination of complete mt-genome of C. hongkongensis has yielded useful insight into features of gene order, variation, and evolution of Crassostrea and bivalve mt-genomes.ConclusionThe mt-genome of C. hongkongensis shares some similarity with, and interesting differences to, other Crassostrea species and bivalves. The absence of trnC and trnN genes and duplicated or split rRNA genes from the C. hongkongensis genome is a completely novel feature not previously reported in Crassostrea species. The phenomenon is likely due to the loss of a segment that is present in other Crassostrea species and was present in ancestor of C. hongkongensis, thus a case of "tandem duplication-random loss (TDRL)". The mt-genome and new feature presented here reveal and underline the high level variation of gene order and gene content in Crassostrea and bivalves, inspiring more research to gain understanding to mechanisms underlying gene and genome evolution in bivalves and mollusks.

Highlights

  • Mitochondrial DNA sequences are extensively used as genetic markers for studies of population or ecological genetics, and for phylogenetic and evolutionary analyses

  • The absence of trnC and trnN genes and duplicated or split rRNA genes from the C. hongkongensis genome is a completely novel feature not previously reported in Crassostrea species

  • The phenomenon is likely due to the loss of a segment that is present in other Crassostrea species and was present in ancestor of C. hongkongensis, a case of "tandem duplication-random loss (TDRL)"

Read more

Summary

Introduction

Mitochondrial DNA sequences are extensively used as genetic markers for studies of population or ecological genetics, and for phylogenetic and evolutionary analyses. Since studying complete mt sequences can uncover more information about gene order, rearrangements, and other variation at the genome level for all phyla, there have been significant increases in the number of complete mitochondrial sequences available in recent years [2,3,4,5,6,7]. Interest in C. hongkongensis mitochondrial DNA has been increasing recently, partially due to the potential of mtDNA as a genetic marker for population analysis, stock management, and breeding programs. We determined the complete mitochondrial genome sequence of C. hongkongensis, in the hope of providing mt genome data for exploring possible mechanisms of gene rearrangements, addressing phylogenetic relationships among oysters and other molluscan species, as well as identifying more variable mtDNA regions for genetics studies and stock management of this important aquaculture resource

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call