Abstract
The well-known Chowla and Zassenhaus conjecture, proven by Cohen in 1990, states that for any \(d\ge 2\) and any prime \(p>(d^2-3d+4)^2\) there is no complete mapping polynomial in \(\mathbb {F}_p[x]\) of degree d. For arbitrary finite fields \(\mathbb {F}_q\), we give a similar result in terms of the Carlitz rank of a permutation polynomial rather than its degree. We prove that if \(n<\lfloor q/2\rfloor \), then there is no complete mapping in \(\mathbb {F}_q[x]\) of Carlitz rank n of small linearity. We also determine how far permutation polynomials f of Carlitz rank \(n<\lfloor q/2\rfloor \) are from being complete, by studying value sets of \(f+x.\) We provide examples of complete mappings if \(n=\lfloor q/2\rfloor \), which shows that the above bound cannot be improved in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.