Abstract

In this paper for a given Banach, possibly infinite dimensional, manifold M we focus on the geometry of its iterated tangent bundle TrM, r ∈ ℕ ∪ {∞}. First we endow TrM with a canonical atlas using that of M. Then the concepts of vertical and complete lifts for functions and vector fields on TrM are defined which they will play a pivotal role in our next studies i.e. complete lift of (semi)sprays. Afterward we supply T∞M with a generalized Fréchet manifold structure and we will show that any vector field or (semi)spray on M, can be lifted to a vector field or (semi)spray on T∞M. Then, despite of the natural difficulties with non-Banach modeled manifolds, we will discuss about the ordinary differential equations on T∞M including integral curves, flows and geodesics. Finally, as an example, we apply our results to the infinite-dimensional case of manifold of closed curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.