Abstract

Taking a velocity saturation effect and a carrier heating effect in the gradual channel region, complete thermal noise modeling of short-channel MOSFETs including the induced gate noise and its correlation coefficients is presented and verified extensively with experimentally measured data. All of the four noise models have excellently predicted experimental data with maximal error less than 10% for the deep-submicron MOSFETs. Using these models and a simultaneous matching technique for both optimal noise and power, a low noise CMOS amplifier optimized for 5.2-GHz operation has been designed and fabricated. Experiments using an external tuner show that both NF/sub 50/ and NF/sub min/ are very close to 1.1 dB, which is an excellent figure of merit among reported LNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call