Abstract

BackgroundAntimonite [Sb(III)]-oxidizing bacterium has great potential in the environmental bioremediation of Sb-polluted sites. Bacillus sp. S3 that was previously isolated from antimony-contaminated soil displayed high Sb(III) resistance and Sb(III) oxidation efficiency. However, the genomic information and evolutionary feature of Bacillus sp. S3 are very scarce.ResultsHere, we identified a 5,436,472 bp chromosome with 40.30% GC content and a 241,339 bp plasmid with 36.74% GC content in the complete genome of Bacillus sp. S3. Genomic annotation showed that Bacillus sp. S3 contained a key aioB gene potentially encoding As (III)/Sb(III) oxidase, which was not shared with other Bacillus strains. Furthermore, a wide variety of genes associated with Sb(III) and other heavy metal (loid) s were also ascertained in Bacillus sp. S3, reflecting its adaptive advantage for growth in the harsh eco-environment. Based on the analysis of phylogenetic relationship and the average nucleotide identities (ANI), Bacillus sp. S3 was proved to a novel species within the Bacillus genus. The majority of mobile genetic elements (MGEs) mainly distributed on chromosomes within the Bacillus genus. Pan-genome analysis showed that the 45 genomes contained 554 core genes and many unique genes were dissected in analyzed genomes. Whole genomic alignment showed that Bacillus genus underwent frequently large-scale evolutionary events. In addition, the origin and evolution analysis of Sb(III)-resistance genes revealed the evolutionary relationships and horizontal gene transfer (HGT) events among the Bacillus genus. The assessment of functionality of heavy metal (loid) s resistance genes emphasized its indispensable role in the harsh eco-environment of Bacillus genus. Real-time quantitative PCR (RT-qPCR) analysis indicated that Sb(III)-related genes were all induced under the Sb(III) stress, while arsC gene was down-regulated.ConclusionsThe results in this study shed light on the molecular mechanisms of Bacillus sp. S3 coping with Sb(III), extended our understanding on the evolutionary relationships between Bacillus sp. S3 and other closely related species, and further enriched the Sb(III) resistance genetic data sources.

Highlights

  • Antimonite [Sb(III)]-oxidizing bacterium has great potential in the environmental bioremediation of Sb-polluted sites

  • S3 intuitively showed that the cell walls were enveloped by filaments, possibly due to the presence of extracellular polymeric substances

  • Smaller cell size, lesser wrinkled cell wall and the occurrence of intracellular dissolution were visible in present of other heavy metal s (Fig. 1c-h)

Read more

Summary

Introduction

Antimonite [Sb(III)]-oxidizing bacterium has great potential in the environmental bioremediation of Sb-polluted sites. S3 that was previously isolated from antimony-contaminated soil displayed high Sb(III) resistance and Sb(III) oxidation efficiency. The genomic information and evolutionary feature of Bacillus sp. Conventional remediation technologies have been developed to remove heavy metal (loid) s from contaminated surroundings, such as ion exchange, membrane separation, coagulation/flocculation, electrochemical methods, extraction and adsorption [6, 7]. Most of these physiochemical remediation methods are not suitable for large-scale applications because of their high cost, generation of secondary pollution and unsustainable nature [8]. Microorganisms are able to alleviate the toxicity of heavy metal (loid) s using various resistance strategies, such as extracellular precipitation, intracellular sequestration, enzymatic transformation and oxido-reduction of toxic metal ions [8, 10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call