Abstract

With the isolation and identification of efficient azo-dye degradation bacteria, bioaugmentation with specific microbial strains has now become an effective strategy to promote the bioremediation of azo dye. However, Azo dye wastewater discharged at high temperature restricted the extensive application of the known mesophilic azoreducing microorganisms. Here we present the complete genome sequence of a bacterium capable of reducing azo dye under thermophilic condition, Novibacillus thermophiles SG-1 (=KCTC 33118T =CGMCC 1.12363T). The complete genome of strain SG-1 contains a circular chromosome of 3,629,225 bp with a G + C content of 50.44%. Genome analysis revealed that strain SG-1 possessed genes encoding riboflavin biosynthesis protein that would secrete riboflavin, which could act as electron shuttles to transport the electrons to extracellular azo dye in decolorization process. HPLC analysis showed that the concentration of riboflavin increased from 0.01 μM to 0.255 μM with the growth of strain SG-1 under azo dye reduction. Quantitative real-time PCR analysis further demonstrated that the gene encoding riboflavin biosynthesis protein would be involved in the azo dye decolorization. The results from this study would be beneficial to research the mechanism of anaerobic reduction of azo dye under thermophilic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.