Abstract

Spirochaeta smaragdinae Magot et al. 1998 belongs to the family Spirochaetaceae. The species is Gram-negative, motile, obligately halophilic and strictly anaerobic and is of interest because it is able to ferment numerous polysaccharides. S. smaragdinae is the only species of the family Spirochaetaceae known to reduce thiosulfate or element sulfur to sulfide. This is the first complete genome sequence in the family Spirochaetaceae. The 4,653,970 bp long genome with its 4,363 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Highlights

  • Strain SEBR 4228T (= DSM 11293 = JCM 15392) is the type strain of the species Spirochaeta smaragdinae

  • Strain SEBR 4228T shares 82.2-99.0% 16S rRNA gene sequence identity with the type strains from the other members of genus Spirochaeta [4], with the type strain of S. bajacaliforniensis [5], isolated from a mud sample in Laguna Figueroa (Baja California, Mexico) showing the highest degree of sequence similarity (99%)

  • Notwithstanding the high degree of 16S rRNA gene sequence identity, The Genomic Standards Consortium these two strains are characterized by low genomic similarity (38%) in DNA-DNA hybridization studies and differ by numerous differences in carbon source utilization [3]

Read more

Summary

Introduction

Strain SEBR 4228T shares 82.2-99.0% 16S rRNA gene sequence identity with the type strains from the other members of genus Spirochaeta [4], with the type strain of S. bajacaliforniensis [5], isolated from a mud sample in Laguna Figueroa (Baja California, Mexico) showing the highest degree of sequence similarity (99%). Notwithstanding the high degree of 16S rRNA gene sequence identity, The Genomic Standards Consortium these two strains are characterized by low genomic similarity (38%) in DNA-DNA hybridization studies and differ by numerous differences in carbon source utilization [3]. A representative genomic 16S rRNA sequence of strain SEBR 4228T was compared using BLAST with the most recent release of the Greengenes database [6] and the relative frequencies of taxa and keywords, weighted by BLAST scores, were determined.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.