Abstract

A Gram-negative, non-motile and short-rod shaped and gamma-radiation-resistant bacterium Deinococcus soli N5T, isolated from a rice field soil in South Korea. The complete genome of D. soli N5T consists of a chromosome (3,236,984bp). The key enzymes for the central DNA repair mechanisms were present in the genome. The enzyme coding genes has been identified which is involving in the nucleotide excision repair (NER) pathway. The gene cluster in the genome sequence suggest that the D. soli N5T use (NER) pathways for efficient removal of pyrimidine dimers that are the most abundant type of UV- induced damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.