Abstract

The whole genome of Alteromonas pelagimontana 5.12T, a psychrotolerant deep-sea bacterium isolated from the sediment sample of eastern Southwest Indian Ridge, was sequenced and analysed for understanding its metabolic capacities and biosynthesis potential of natural products. The circular genome contained 4.3Mb with a GC content of 42.6mol%. Genomic data mining revealed a gene cluster for heavy metal resistance (czcABC, acrB, arsR1, copA, nikA, mntH, mntP), exopolysaccharides (EPS; epsCDEFHLM) and polyhydroxyalkanoates (PHA; phbC) production, as well as genes involved in complex polysaccharide degradation. Genes that could allow strain 5.12T to cope with acid stress (ibaG) and heat shock (ibpA, hslR) were observed along with ten chaperone-encoding genes which could possibly play vital role in adaptability of this strain to the hydrothermally influenced environment. Gene clusters for secondary metabolite production such as bacteriocin and arylpolyene were also predicted. Thus, genome sequencing and data mining provided insights into the molecular mechanisms involved in the adaptation to hydrothermally influenced deep-sea environment that could promote further experimental exploration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.