Abstract

In July 2018, pepper plants (Capsicum annuum L.) with chlorotic leaves and fruits were observed in Kochi prefecture, Japan. High-throughput sequencing (HTS) identified the possible presence of an ophiovirus-like virus possessing three RNA segments in a chlorotic leaf. Using Sanger sequencing with primers designed based on the HTS results and a different source of RNA from the one used for HTS, the complete nucleotide sequences of three RNA segments encoding four proteins on their complementary strand were determined. The amino acid sequences of these four proteins showed similarity to those of the RNA-dependent RNA polymerase, RNA-silencing suppressor protein, movement protein, and coat protein, respectively, of ophioviruses, which are negative-sense single-stranded RNA viruses. However, the coat protein amino acid sequence of the virus found on pepper plants was no more than 61.9% identical to those of any known ophioviruses, which is lower than the species demarcation threshold of 85 %. Hence, we suggest that this virus, which we have named "pepper chlorosis associated virus" (PepCaV) should be considered a member of a new species in the genus Ophiovirus, for which we propose the name "Ophiovirus capsici". The results of phylogenetic analysis using coat protein amino acid sequences of PepCaV and other ophioviruses also supported this conclusion. PepCaV RNA was found to have conserved nucleotide sequences at both the 5' and 3' termini of the different RNA segments, and the conserved terminal nucleotide sequences were predicted to form a self-complementary double-stranded region, resulting in a panhandle structure in each of the genomic RNAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call