Abstract

BackgroundPontimonas salivibrio strain CL-TW6T (=KCCM 90105 = JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized.ResultsThe genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G + C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions.ConclusionsBecause of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.

Highlights

  • Pontimonas salivibrio strain CL-TW6T (=KCCM 90105 = JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae

  • P. salivibrio is a photoheterotrophic streamlined bacterium, even though it grows in a non-oligotrophic coastal marine zone

  • The pathway through which this bacterium has adapted to this zone may have involved passage through a more traditional streamlined oligotrophic state followed by reacquisition of some functions

Read more

Summary

Introduction

Pontimonas salivibrio strain CL-TW6T (=KCCM 90105 = JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized. To try to better understand the distribution and adaptations of bacteria in this environment, we have been culturing and characterizing bacteria from different niches within the coastal environment One of these was the slow growing marine actinobacterium Pontimonas salivibrio CL-TW6T (=KCCM90105 = JCM18206), which is the solitary representative of a new genus belonging to family Microbacteriaceae in the order Actinomycetales [1]. Other phenotypic characteristics have been determined [1, 3] With only this one isolation site known, there is insufficient information to fully understand the habitat preference or ecology for members of P. salivibrio. We assume it was drawn into the saltern from some natural niche within the coastal environment

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call