Abstract

Vibrio parahaemolyticus is an important foodborne pathogen that is generally transmitted via raw or undercooked seafood. Endolysins originating from bacteriophages offer a new way to control bacterial pathogens. The objectives of this study were to sequence a novel lytic V. parahaemolyticus phage VPp1 and determine the antibacterial activities of the recombinant endolysin (LysVPp1) derived from this phage. The complete VPp1 genome contained a double-stranded DNA of 50,431 bp with a total G+C content of 41.35%. The genome was predicted to encode 67 open reading frames (ORFs), which were organized as nucleotide metabolism, replication, structure, packaging, lysis, and some additional functions. Two tRNAs were encoded to carry anticodons UGG and CCA. Among the functional proteins, ORF33 was deduced to encode endolysin, whereas no holin/antiholin or Rz/Rz1 lysis gene equivalents were found in the VPp1 genome. ORF33 was cloned and expressed. The endolysin LysVPp1 could lyse 9 of 12 V. parahaemolyticus strains, showing its relatively broader host spectrum than phage VPp1, which lysed only 3 of 12 V. parahaemolyticus strains. Furthermore, for EDTA-pretreated bacterial cells, the optical density of the LysVPp1 treatment group decreased by 0.4 at 450 nm, compared with less than 0.1 in control groups, demonstrating enhanced hydrolytic properties. These results contribute to the potential for development of novel enzybiotics for controlling V. parahaemolyticus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.