Abstract

The syn and anti isomers of the bi- and trinuclear Re(CO)(3)Cl complexes of 2,3,8,9,14,15-hexamethyl-5,6,11,12,17,18-hexaazatrinapthalene (HATN-Me(6)) are reported. The isomers are characterized by (1)H NMR spectroscopy and X-ray crystallography. The formation of the binuclear complex from the reaction of HATN-Me(6) with 2 equiv of Re(CO)(5)Cl in chloroform results in a 1:1 ratio of the syn and anti isomers. However, synthesis of the trinuclear complex from the reaction of HATN-Me(6) with 3 equiv of Re(CO)(5)Cl in chloroform produces only the anti isomer. syn-{(Re(CO)(3)Cl)(3)(μ-HATN-Me(6))} can be synthesized by reacting 1 equiv of Re(CO)(5)Cl with syn-{(Re(CO)(3)Cl)(2)(μ-HATN-Me(6))} in refluxing toluene. The product is isolated by subsequent chromatography. The X-ray crystal structures of syn-{(Re(CO)(3)Cl)(2)(μ-HATN-Me(6))} and anti-{(Re(CO)(3)Cl)(3)(μ-HATN-Me(6))} are presented both showing severe distortions of the HATN ligand unit and intermolecular π stacking. The complexes show intense absorptions in the visible region, comprising strong π → π* and metal-to-ligand charge-transfer (MLCT) transitions, which are modeled using time-dependent density functional theory (TD-DFT). The energy of the MLCT absorption decreases from mono- to bi- to trinuclear complexes. The first reduction potentials of the complexes become more positive upon binding of subsequent Re(CO)(3)Cl fragments, consistent with changes in the energy of the MLCT bands and lowering of the energy of relevant lowest unoccupied molecular orbitals, and this is supported by TD-DFT. The nature of the excited states of all of the complexes is also studied using both resonance Raman and picosecond time-resolved IR spectroscopy, where it is shown that MLCT excitation results in the oxidation of one rhenium center. The patterns of the shifts in the carbonyl bands upon excitation reveal that the MLCT state is localized on one rhenium center on the IR time scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.