Abstract

In the present work, we describe the results obtained with a large ($\approx 133$ cm$^3$) TeO$_2$ bolometer, with a view to a search for neutrinoless double-beta decay ($0\nu\beta\beta$) of $^{130}$Te. We demonstrate an efficient $\alpha$ particle discrimination (99.9\%) with a high acceptance of the $0\nu\beta\beta$ signal (about 96\%), expected at $\approx 2.5$ MeV. This unprecedented result was possible thanks to the superior performance (10 eV rms baseline noise) of a Neganov-Luke-assisted germanium bolometer used to detect a tiny (70 eV) light signal from the TeO$_2$ detector, dominated by $\gamma$($\beta$)-induced Cherenkov radiation but exhibiting also a clear scintillation component. The obtained results represent a major breakthrough towards the TeO$_2$-based version of CUORE Upgrade with Particle IDentification (CUPID), a ton-scale cryogenic $0\nu\beta\beta$ experiment proposed as a follow-up to the CUORE project with particle identification. The CUORE experiment began recently a search for neutrinoless double-beta decay of $^{130}$Te with an array of 988 125-cm$^3$ TeO$_2$ bolometers. The lack of $\alpha$ discrimination in CUORE makes $\alpha$ decays at the detector surface the dominant background component, at the level of $\approx 0.01$ counts/(keV kg y) in the region of interest. We show here, for the first time with a CUORE-size bolometer and using the same technology as CUORE for the readout of both heat and light signals, that surface $\alpha$ background can be fully rejected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call