Abstract

AbstractA novel system for in situ regeneration of reduced nicotinamide cofactors (NADH) is proposed: through a cascade of alcohol dehydrogenase (ADH), formaldehyde dismutase (FDM) and formate dehydrogenase (FDH) complete oxidation of methanol to carbon dioxide (CO2) is coupled to the regeneration of NADH. As a consequence, from one equivalent of methanol three equivalents of NADH can be obtained. The feasibility of this cascade is demonstrated at the examples of an NADH‐dependent reduction of conjugated CC‐double bonds (catalysed by an enoate reductase) and the NADH‐dependent hydroxylation of phenols (catalysed by a monooxygenase). The major limitation of the current regeneration system is the comparably poor catalytic efficiency of the methanol oxidation step (low kcat and high KM value of the ADH used) necessitating higher than theoretical methanol concentrations.magnified image

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.