Abstract

The non-Mendelian inheritance of organellar DNA is common in most plants and animals. In the isogamous green alga Chlamydomonas species, progeny inherit chloroplast genes from the maternal parent, as paternal chloroplast genes are selectively eliminated in young zygotes. Mitochondrial genes are inherited from the paternal parent. Analogically, maternal mitochondrial DNA (mtDNA) is thought to be selectively eliminated. Nevertheless, it is unclear when this selective elimination occurs. Here, we examined the behaviors of maternal and paternal mtDNAs by various methods during the period between the beginning of zygote formation and zoospore formation. First, we observed the behavior of the organelle nucleoids of living cells by specifically staining DNA with the fluorochrome SYBR Green I and staining mitochondria with 3,3'-dihexyloxacarbocyanine iodide. We also examined the fate of mtDNA of male and female parental origin by real-time PCR, nested PCR with single zygotes, and fluorescence in situ hybridization analysis. The mtDNA of maternal origin was completely eliminated before the first cell nuclear division, probably just before mtDNA synthesis, during meiosis. Therefore, the progeny inherit the remaining paternal mtDNA. We suggest that the complete elimination of maternal mtDNA during meiosis is the primary cause of paternal mitochondrial inheritance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call