Abstract

Regulation of low-density-lipoprotein-receptor activity by low-density lipoprotein (LDL), cholesteryl-ester-rich beta-migrating very-low-density lipoprotein (beta-VLDL) and non-lipoprotein cholesterol was investigated in the human hepatoma cell line Hep G2. Competition studies indicate that LDL and beta-VLDL are bound to the same recognition site, tentatively the LDL receptor. The regulatory response of the LDL receptor upon prolonged incubation with LDL or beta-VLDL was, however, markedly different. 22 h preincubation of Hep G2 cells with excess LDL caused a partial down regulation to 31% of the initial level of the high-affinity association of LDL and 26% of the high-affinity degradation of LDL, while with beta-VLDL a complete down regulation of the LDL-receptor activity is observed. Preincubation of Hep G2 cells with beta-VLDL for 22 h led to a fourfold increase in intracellular cholesterol esters and a twofold increase in acyl-coA:cholesterol acyltransferase activity. With LDL, the amount of intracellular cholesterol esters is increased 1.6-fold. The more effective down regulation of LDL receptors by beta-VLDL as compared to LDL can be explained by the more effective intracellular cholesterol delivery with beta-VLDL than with LDL. Preincubation of Hep G2 cells for 22 h with acetylated LDL hardly influenced the LDL-receptor activity. Non-lipoprotein cholesterol, however, caused a complete down regulation of LDL-receptor activity at even lower extracellular cholesterol concentrations than with beta-VLDL. The complete down regulation of LDL receptors by non-lipoprotein cholesterol is not accompanied by a significant increase in acyl-coA:cholesterol acyltransferase activity, while the intracellular cholesterol ester concentration is only increased 1.6-fold. It is suggested that the effectiveness of non-lipoprotein cholesterol to regulate LDL receptors is caused by its efficiency to reach the sterol regulatory site. The inability of LDL to down regulate its receptor completely can thus be explained by the inability of LDL to deliver cholesterol adequately at the intracellular regulatory site of the LDL receptor. The observed complete down regulation of the LDL receptor by beta-VLDL may be responsible for the cholesterol-rich-diet induced, complete down regulation of LDL-receptor-mediated clearance of LDL in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.