Abstract

We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to accomplish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic mobile robot by combining the variable z of the Arnold equation and the kinematic equation of the robot. Second, we construct the candidate sets including the initial points with a relatively high coverage rate of the constructed mobile robot. Then the trajectory is contracted to the current position of the robot based on the designed contraction transformation strategy, to form a continuous complete coverage trajectory to execute the specific types of missions. Compared with the traditional method, the designed algorithm requires no obstacle avoidance to the boundary of the given workplace, possesses a high coverage rate, and keeps the chaotic characteristics of the produced coverage trajectory relatively unchanged, which enables the robot to accomplish special missions with features of completeness, randomness, or unpredictability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.