Abstract
In this paper, an exponential inequality for the maximal partial sums of negatively superadditive-dependent (NSD, in short) random variables is established. By using the exponential inequality, we present some general results on the complete convergence for arrays of rowwise NSD random variables, which improve or generalize the corresponding ones of Wang et al. [28] and Chen et al. [2]. In addition, some sufficient conditions to prove the complete convergence are provided. As an application of the complete convergence that we established, we further investigate the complete consistency and convergence rate of the estimator in a nonparametric regression model based on NSD errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Mathematics-A Journal of Chinese Universities
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.