Abstract

This paper we study and establish the complete convergence and complete moment convergence theorems under a sub-linear expectation space. As applications, the complete convergence and complete moment convergence for negatively dependent random variables with CV (exp (ln? |X|)) < ?, ? > 1 have been generalized to the sub-linear expectation space context. We extend some complete convergence and complete moment convergence theorems for the traditional probability space to the sub-linear expectation space. Our results generalize corresponding results obtained by Gut and Stadtm?ller (2011), Qiu and Chen (2014) and Wu and Jiang (2016). There is no report on the complete moment convergence under sub-linear expectation, and we provide the method to study this subject.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.