Abstract

From the work of Simmons about nuclei in frames it follows that a topological space X is scattered if and only if each congruence Θ on the frame of open sets is induced by a unique subspace A so that $\Theta = \{ (U,V) | U\mathop{\cap} A = V\mathop{\cap} A\}$ , and that the same holds without the uniqueness requirement iff X is weakly scattered (corrupt). We prove a seemingly similar but substantially different result about quasidiscrete topologies (in which arbitrary intersections of open sets are open): each complete congruence on such a topology is induced by a subspace if and only if the corresponding poset is (order) scattered, i.e. contains no dense chain. More questions concerning relations between frame, complete, spatial, induced and open congruences are discussed as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.