Abstract
Let [Formula: see text] be an extriangulated category with a proper class [Formula: see text] of [Formula: see text]-triangles. We study complete cohomology of objects in [Formula: see text] by applying [Formula: see text]-projective resolutions and [Formula: see text]-injective coresolutions constructed in [Formula: see text]. Vanishing of complete cohomology detects objects with finite [Formula: see text]-projective dimension and finite [Formula: see text]-injective dimension. As a consequence, we obtain some criteria for the validity of the Wakamatsu tilting conjecture and give a necessary and sufficient condition for a virtually Gorenstein algebra to be Gorenstein. Moreover, we give a general technique for computing complete cohomology of objects with finite [Formula: see text]-[Formula: see text]projective dimension. As an application, the relations between [Formula: see text]-projective dimension and [Formula: see text]-[Formula: see text]projective dimension for objects in [Formula: see text] are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.