Abstract

An unprecedented, spontaneous, and complete cleavage of the triple bond of N2 in the thermal reaction of 15N2 with Ta2 14N+ was observed experimentally by Fourier transform ion cyclotron resonance mass spectrometry; mechanistic aspects of the degenerate ligand exchange were addressed by high-level quantum chemical calculations. The "hidden" dis- and reassembly of N2, mediated by Ta2N+, constitutes a full catalytic cycle. A frontier orbital analysis reveals that the scission of the N2 triple bond is essentially governed by the donation of d-electrons from the 2 metal centers into antibonding π*-orbitals of N2 and by the concurrent migration of electrons from bonding π- and σ-orbitals of N2 into empty d-orbitals of the metals. This work may contribute to a rational design of catalysts in order to reduce the still enormous energy demand required for an artificial dinitrogen activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.