Abstract
Ho\v{r}ava gravity has been proposed as a renormalizable, higher-derivative gravity without ghost problems, by considering different scaling dimensions for space and time. In the non-relativistic higher-derivative generalization of Einstein gravity, the meaning and physical properties of black hole and membrane space-times are quite different from the conventional ones. Here, we study the singularity and horizon structures of such geometries in IR-modified Ho\v{r}ava gravity, where the so-called "detailed balance" condition is softly broken in IR. We classify all the viable static solutions without naked singularities and study its close connection to non-singular cosmology solutions. We find that, in addition to the usual point-like singularity at $r=0$, there exists a "surface-like" curvature singularity at finite $r=r_S$ which is the cutting edge of the real-valued space-time. The degree of divergence of such singularities is milder than those of general relativity, and the Hawking temperature of the horizons diverges when they coincide with the singularities. As a byproduct we find that, in addition to the usual "asymptotic limit," a consistent flow of coupling constants, that we called "GR flow limit," is needed in order to recover general relativity in the IR.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.