Abstract

Ho\v{r}ava gravity has been proposed as a renormalizable, higher-derivative gravity without ghost problems, by considering different scaling dimensions for space and time. In the non-relativistic higher-derivative generalization of Einstein gravity, the meaning and physical properties of black hole and membrane space-times are quite different from the conventional ones. Here, we study the singularity and horizon structures of such geometries in IR-modified Ho\v{r}ava gravity, where the so-called "detailed balance" condition is softly broken in IR. We classify all the viable static solutions without naked singularities and study its close connection to non-singular cosmology solutions. We find that, in addition to the usual point-like singularity at $r=0$, there exists a "surface-like" curvature singularity at finite $r=r_S$ which is the cutting edge of the real-valued space-time. The degree of divergence of such singularities is milder than those of general relativity, and the Hawking temperature of the horizons diverges when they coincide with the singularities. As a byproduct we find that, in addition to the usual "asymptotic limit," a consistent flow of coupling constants, that we called "GR flow limit," is needed in order to recover general relativity in the IR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.