Abstract

We consider the notion of cosmological symmetry, i.e. spatial homogeneity and isotropy, in the field of teleparallel gravity and geometry, and provide a complete classification of all homogeneous and isotropic teleparallel geometries. We explicitly construct these geometries by independently employing three different methods, and prove that all of them lead to the same class of geometries. Further, we derive their properties, such as the torsion tensor and its irreducible decomposition, as well as the transformation behavior under change of the time coordinate, and derive the most general cosmological field equations for a number of teleparallel gravity theories. In addition to homogeneity and isotropy, we extend the notion of cosmological symmetry to also include spatial reflections, and find that this further restricts the possible teleparallel geometries. This work answers an important question in teleparallel cosmology, in which so far only particular examples of cosmologically symmetric solutions had been known, but it was unknown whether further solutions can be constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.