Abstract

The complete chloroplast genome of Artemisia annua (Asteraceae), the primary source of artemisinin, was sequenced and analyzed. The A. annua cp genome is 150,995 bp, and harbors a pair of inverted repeat regions (IRa and IRb), of 24,850 bp each that separate large (LSC, 82,988 bp) and small (SSC, 18,267 bp) single-copy regions. Our annotation revealed that the A. annua cp genome contains 113 genes and 18 duplicated genes. The gene order in the SSC region of A. annua is inverted; this fact is consistent with the sequences of chloroplast genomes from three other Artemisia species. Fifteen (15) forward and seventeen (17) inverted repeats were detected in the genome. The existence of rich SSR loci in the genome suggests opportunities for future population genetics work on this anti-malarial medicinal plant. In A. annua cpDNA, the rps19 gene was found in the LSC region rather than the IR region, and the rps19 pseudogene was absent in the IR region. Sequence divergence analysis of five Asteraceae species indicated that the most highly divergent regions were found in the intergenic spacers, and that the differences between A. annua and A. fukudo were very slight. A phylogenetic analysis revealed a sister relationship between A. annua and A. fukudo. This study identified the unique characteristics of the A. annua cp genome. These results offer valuable information for future research on Artemisia species identification and for the selective breeding of A. annua with high pharmaceutical efficacy.

Highlights

  • Artemisia annua, an herbaceous annual with a strong volatile aroma, belongs to the genus Artemisia (Asteraceae)

  • GC and AT content of the A. annua cp genome is 37.5% and 62.5%, respectively, which is similar to the cp genomes of other Asteraceae spp. [21,22,23]

  • The bias toward a higher AT representation at the third codon position has been found to be common in other plant cp genomes [15,24], and this bias is used to discriminate cpDNA from nuclear and mitochondrial DNA [25]

Read more

Summary

Introduction

An herbaceous annual with a strong volatile aroma, belongs to the genus Artemisia (Asteraceae). It is the sole natural source of the antimalarial drug artemisinin [1], and is cultivated as a high-value medicinal plant (Qing hao). Has received strong interest from the global health community because of the efficacy of artemisinin and its derivatives [2]. The 2015 Nobel Prize for Physiology or Medicine was awarded to Professor Youyou Tu for the discovery of artemisinin [3]. There are concerns that the production of high-quality artemisinin may not be sufficient to meet future demand [2].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.