Abstract

BackgroundOncidium spp. produce commercially important orchid cut flowers. However, they are amenable to intergeneric and inter-specific crossing making phylogenetic identification very difficult. Molecular markers derived from the chloroplast genome can provide useful tools for phylogenetic resolution.ResultsThe complete chloroplast genome of the economically important Oncidium variety Onc. Gower Ramsey (Accession no. GQ324949) was determined using a polymerase chain reaction (PCR) and Sanger based ABI sequencing. The length of the Oncidium chloroplast genome is 146,484 bp. Genome structure, gene order and orientation are similar to Phalaenopsis, but differ from typical Poaceae, other monocots for which there are several published chloroplast (cp) genome. The Onc. Gower Ramsey chloroplast-encoded NADH dehydrogenase (ndh) genes, except ndhE, lack apparent functions. Deletion and other types of mutations were also found in the ndh genes of 15 other economically important Oncidiinae varieties, except ndhE in some species. The positions of some species in the evolution and taxonomy of Oncidiinae are difficult to identify. To identify the relationships between the 15 Oncidiinae hybrids, eight regions of the Onc. Gower Ramsey chloroplast genome were amplified by PCR for phylogenetic analysis. A total of 7042 bp derived from the eight regions could identify the relationships at the species level, which were supported by high bootstrap values. One particular 1846 bp region, derived from two PCR products (trnHGUG -psbA and trnFGAA-ndhJ) was adequate for correct phylogenetic placement of 13 of the 15 varieties (with the exception of Degarmoara Flying High and Odontoglossum Violetta von Holm). Thus the chloroplast genome provides a useful molecular marker for species identifications.ConclusionIn this report, we used Phalaenopsis. aphrodite as a prototype for primer design to complete the Onc. Gower Ramsey genome sequence. Gene annotation showed that most of the ndh genes inOncidiinae, with the exception of ndhE, are non-functional. This phenomenon was observed in all of the Oncidiinae species tested. The genes and chloroplast DNA regions that would be the most useful for phylogenetic analysis were determined to be the trnHGUG-psbA and the trnFGAA-ndhJ regions. We conclude that complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies in Oncidium with applications for breeding and variety identification.

Highlights

  • Oncidium spp. produce commercially important orchid cut flowers

  • Coding regions make up 49.94% of the chloroplast genome (41.86% protein-coding genes, 8.08% RNA genes) and non-coding regions, which contain intergenic spacer (IGS) regions and introns, comprise 50.06%

  • Non-functionality of ndh genes has been found in photosynthetic orchids and gymnosperms, such as in Pinus thunbergii and Phalaenopsis

Read more

Summary

Introduction

Oncidium spp. produce commercially important orchid cut flowers. They are amenable to intergeneric and inter-specific crossing making phylogenetic identification very difficult. Molecular markers derived from the chloroplast genome can provide useful tools for phylogenetic resolution. W u et al BMC Plant Biology 2010, 10:68 http://www.biomedcentral.com/1471-2229/10/68 neric hybrids reported [1] and the fact that more than 2200 hybrids (about 20% in the Oncidium group) have been re-distributed into other genera. Different molecular marker techniques such as terminal restriction fragment length polymorphism (TRFL), arbitrarily primed polymerase chain reaction (AP-PCR), DNA amplification fingerprinting (DAF), and random amplification polymorphism DNA (RAPD)] are available to conduct genetic analyses by PCR and provide information about evolution that is useful for taxonomy. There are many advantages to using cpDNA for taxonomy and evolutionary research: (1) the size of cpDNA is small, with high copy number and simple structure; (2) when compared to the mitochondrial and nuclear genome, cpDNA gene content and arrangement are more conserved, making it easier to design primers and clone genes; (3) cpDNA is maternally inherited and without the genetic reassortment that interferes with the molecular phylogenetic relationships [4,5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call