Abstract

Lens lamottei is a member of the Fabaceae family and the second gene pool of the genus Lens. The environmental factors that drove the divergence among wild and cultivated species have been studied extensively. Recent research has focused on genomic signatures associated with various phenotypes with the acceleration of next-generation techniques in molecular profiling. Therefore, in this study, we provide the complete sequence of the chloroplast genome sequence in the wild Lens species L. lamottei with a deep coverage of 713 × next-generation sequencing (NGS) data for the first time. Compared to the cultivated species, Lens culinaris, we identified synonymous, and nonsynonymous changes in the protein-coding regions of the genes ndhB, ndhF, ndhH, petA, rpoA, rpoC2, rps3, and ycf2 in L. lamottei. Phylogenetic analysis of chloroplast genomes of various plants under Leguminosae revealed that L. lamottei and L. culinaris are closest to one another than to other species. The complete chloroplast genome of L. lamottei also allowed us to reanalyze previously published transcriptomic data, which showed high levels of gene expression for ATP-synthase, rubisco, and photosystem genes. Overall, this study provides a deeper insight into the diversity of Lens species and the agricultural importance of these plants through their chloroplast genomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.