Abstract

Plants belonging to the Bignoniaceae family have a wide distribution in the tropics and large populations around the world. However, limited information is available about Bignoniaceae. This study aimed to obtain more research information about Bignoniaceae plants and provide data support for the study of plant plastid genomes. In the present study, we focused on the chloroplast genome bio-information of Campsis grandiflora. The chloroplast DNA of C. grandiflora was extracted, sequenced, assembled, and annotated with corresponding software. Results show that the complete chloroplast genome of C. grandiflora is 154,303bp in length and has a quadripartite structure with large single copy of 85,064bp and a small single copy of 18,009bp separated by inverted repeats of 25,615bp. A total of 110 genes in C. grandiflora comprised 79 protein-coding genes, 27 transfer RNA genes, and 4 ribosomal RNA genes. The distribution of simple sequence repeats and long repeat sequences was determined. We carried out phylogenetic analysis based on homologous amino acid sequence among 45 species derived from Bignoniaceae. Compared with the chloroplast genome of A. thaliana, an inversion was identified in that of C. grandiflora, which result in the incomplete clpP gene. The chloroplast genomes were used for molecular marker, species identification, and phylogenetic studies. The outcome strongly supported that C. grandiflora and genus Incarvillea formed a cluster within Bignoniaceae. This study identified the unique characteristics of the C. grandiflora cp. genome, thus providing theoretical basis for species identification and biological research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call