Abstract
We report on the experimental observation of the B+ 2Σ+ state of MgAr+ located below the Mg+(3p 2P3/2) + Ar(1S0) dissociation asymptote. Using the technique of isolated-core multiphoton Rydberg-dissociation spectroscopy, we have recorded rotationally resolved spectra of the B+ 2Σ+(v') ← X+ 2Σ+(v″ = 7) transitions, which extend from the vibrational ground state (v' = 0) to the dissociation continuum above the Mg+(3p 2P3/2) + Ar(1S0) dissociation threshold. The analysis of the rotational structure reveals a transition from Hund's angular-momentum-coupling case (b) at low v' values to case (c) at high v' values caused by the spin-orbit interaction. Measurements of the kinetic-energy release and the angular distribution of the Mg+ fragments detected in the experiments enabled the characterization of the dissociation mechanisms. The vibrational levels of the B+ state above v' = 6 are subject to predissociation into the Mg+(3p 2P1/2) + Ar(1S0) continuum, and the fragment angular distributions exhibit anisotropy β parameters around 0.5, whereas direct dissociation into the continuum above the Mg+(3p 2P3/2) + Ar(1S0) asymptote is characterized by β parameters approaching 2. Molecular ions excited to the B+ state with v' = 0-6 efficiently absorb a second photon to the repulsive part of the 2Σ+ state associated with the Mg+(3d 2D3/2,5/2) + Ar(1S0) continua. The interpretation of the data is validated by the results of ab initio calculations of the low-lying electronic states of MgAr+, which provided initial evidence for the existence of bound vibrational levels of the B+ state and for the photodissociation mechanisms of its low vibrational levels.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.