Abstract
Abstract This research and survey article deals exclusively with the study of the approximation of generalized multivariate Gauss-Weierstrass singular integrals to the identity-unit operator. Here we study quantitatively most of their approximation properties. The multivariate generalized Gauss-Weierstrass operators are not in general positive linear operators. In particular we study the rate of convergence of these operators to the unit operator, as well as the related simultaneous approximation. These are given via Jackson type inequalities and by the use of multivariate high order modulus of smoothness of the high order partial derivatives of the involved function. Also we study the global smoothness preservation properties of these operators. These multivariate inequalities are nearly sharp and in one case the inequality is attained, that is sharp. Furthermore we give asymptotic expansions of Voronovskaya type for the error of multivariate approximation. The above properties are studied with respect to Lp norm, 1 ≤ p ≤ ∞.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.