Abstract

Modal characteristics of the one-dimensional (1D) photonic crystal waveguides (PCWs) are investigated thoroughly. By employing the transfer matrix method, we can put the design parameters related to the general multiplayer structure into a compact analytical expression, which serves as the basis for analysis of the band-gap structure of the general 1D photonic crystals (PCs) and the modal characteristics of the general 1D PCWs. The band structure of 1D PCs and modal properties of 1D PCWs, such as the effective index, the modal field profile, the dispersion, the confinement loss, and the confinement factor, are all calculated and simulated. With the help of the band-gap map of the 1D PCs, four guiding regimes for the 1D PCWs are recognized, in accordance with the index of the guiding core. It is shown that the modal characteristics for each regime behave differently from the point of view of guiding mechanism. Furthermore, some related issues such as PCFs are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call