Abstract
Using the theory of large deviations, we analyze the phase transition structure of the Curie–Weiss–Potts spin model, which is a mean-field approximation to the nearest-neighbor Potts model. It is equivalent to the Potts model on the complete graph on n vertices. The analysis is carried out both for the canonical ensemble and the microcanonical ensemble. Besides giving explicit formulas for the microcanonical entropy and for the equilibrium macrostates with respect to the two ensembles, we analyze ensemble equivalence and nonequivalence at the level of equilibrium macrostates, relating these to concavity and support properties of the microcanonical entropy. The Curie–Weiss–Potts model is the first statistical mechanical model for which such a detailed and rigorous analysis has been carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.