Abstract

A nozzle expansion into a vacuum chamber was used to investigate the evaporation of highly superheated liquid jets. The large molar specific heat of fluids with high molecular complexity — in this case C6F14 — is responsible for the new phenomena reported here. A model was developed to describe the basic physical effects. A cubic equation of state was used to describe the thermodynamic properties of the fluid. The evaporation was modelled as a sonic deflagration followed by an axisymmetric supersonic expansion. As in the case of hypersonic gas jets the final state is reached by a normal shock. For sufficiently high temperatures and expansion ratios a complete adiabatic evaporation of the liquid was found. At even higher temperatures the liquid evaporates completely within a rarefaction discontinuity. The predictions of the model are in good agreement with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call