Abstract

Human glutaredoxin is a member of the glutaredoxin family, which is characterized by a glutathione binding site and a redox-active dithiol/disulfide in the active site. Unlike Escherichia coli glutaredoxin-1, this protein has additional cysteine residues that have been suggested to play a regulatory role in its activity. Human glutaredoxin (106 amino acid residues, M(r) = 12,000) has been purified from a pET expression vector with both uniform 15N labeling and 13C/15N double labeling. The combination of three-dimensional 15N-edited TOCSY, 15N-edited NOESY, HNCA, HN(CO)CA, and gradient sensitivity-enhanced HNCACB and HNCO spectra were used to obtain sequential assignments for residues 2-106 of the protein. The gradient-enhanced version of the HCCH-TOCSY pulse sequence and HCCH-COSY were used to obtain side chain 1H and 13C assignments. The secondary structural elements in the reduced protein were identified based on NOE information, amide proton exchange data, and chemical shift index data. Human glutaredoxin contains five helices extending approximately from residues 4-10, 24-36, 53-64, 83-92, and 94-104. The secondary structure also shows four beta-strands comprised of residues 15-19, 43-48, 71-75, 78-80, which form a beta-sheet almost identical to that found in E. coli glutaredoxin-1. Complete 1H, 13C, and 15N assignments and the secondary structure of fully reduced human glutaredoxin are presented. Comparison to the structures of other glutaredoxins is presented and differences in the secondary structure elements are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.