Abstract

Functionalized ionic liquids are a subclass of ionic liquids that are tailored for a specific application. Structural characterization in both solid and liquid phases is central to understanding their physical properties. Here, we used ultralow-frequency Raman spectroscopy, which can measure Raman spectra down to approximately 5 cm(-1) , to study the structures and physical properties of 1-(4-cyanobenzyl)-3-methylimidazolium salts with five different anions. A comparison of the observed low-frequency Raman spectral patterns enabled us to predict the crystal symmetry of one of the synthesized salts for which single-crystal X-ray diffraction data were unobtainable. Real-time tracking of the low-frequency Raman spectral changes during melting revealed peak shifts indicative of different degrees of microscopic heterogeneity in the ionic liquids. The results show that our method provides a facile means that is complementary to X-ray crystallography, for obtaining structural information of ionic liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.