Abstract

Vaccinia virus devoid of its E3L gene is sensitive to treatment of RK-13 cells with interferon-α and fails to replicate or form plaques in HeLa cells. In order to determine function of the E3L gene, vaccinia virus recombinants were constructed by inserting mutant E3L genes or a gene coding for an alternative dsRNA-binding protein into virus deleted of its wild type E3L gene. Those viruses that expressed proteins that retained dsRNA binding activity were resistant to the effects of interferon in RK-13 cells and could replicate in HeLa cells. Recombinant viruses that expressed E3L mutant proteins which were unable to bind to dsRNA were interferon sensitive in RK-13 cells and could not replicate in HeLa cells. In addition, a virus that expressed a mutant E3L protein previously characterized as having a low binding affinity for dsRNA exhibited an intermediate phenotype: it was interferon resistant in RK-13 cells but could not replicate in HeLa cells. This work suggests that the E3L gene of vaccinia virus functions primarily as a dsRNA-binding protein in allowing resistance to interferon and in promoting replication in HeLa cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call