Abstract

The Ah receptor (AhR) is a ligand-dependent transcription factor subunit that heterodimerizes with the AhR nuclear translocator (Arnt) and mediates the predominant biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD activates target genes in xenobiotica metabolism in many cell lines and, more specifically, delays G1–S progression of 5L hepatoma cells. Here we describe transient and stable AhR-expression analysis in AhR-deficient subclones of the TCDD-sensitive 5L cells. We tested the integrity of the AhR-signaling system beyond the lack of the receptor in the variant subclone and analyzed the role of AhR in cell cycle regulation. Transiently expressed AhR has a high basal activity on promoters containing AhR-binding sites, so-called XREs, when transfected into receptor-deficient variant cells compared to wild-type cells. Single- and double-hybrid analysis dissociates AhR ligand responsiveness, transactivation, and heterodimerization with Arnt from receptor binding to an XRE. Hybrid receptors also show the high basal activity in the absence of exogenous TCDD in AhR-deficient variant cells, indicating that the endogenous AhR-activating signal acts directly on the receptor rather than XRE-dependent promoters or DNA binding of the receptor. Stable expression of AhR in variant cell clones by retroviral infection fully reconstitutes TCDD responsiveness, including target-gene induction and delay of cell cycle progression. These AhR-reconstituted cells, like AhR-containing wild-type cells, show low basal activity of the transiently expressed AhR hybrid. Thus, the increased basal activity in AhR-deficient cells suggests a negative feedback control of AhR activity.In vitroligand-binding assays are compatible with the idea that the increased basal activity is due to the accumulation of an AhR-binding endogenous ligand. In conclusion, AhR is causally responsible for TCDD-dependent cell cycle regulation and feedback control of AhR activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.