Abstract
The most common defects in laser powder bed fusion (LPBF) namely porosity, geometrical errors, roughness and thermal deformations are principally linked with the energy input to the process. In common practice, a single set of process parameters is used to produce a whole component independently from the dimensions of the actual scan path within a given layer. However, melt pool stability is highly dependent on the scanned geometry. A possible strategy to maintain a constant melt pool is the mixed use of pulsed wave (PW) and continuous wave (CW) emission regimes. Accordingly, this work investigates the complementary use of continuous and modulated emission at fixed energy density on large and thin sections respectively. The proposed approach is tested on AISI 316L stainless steel and melt pool observations are conducted employing a coaxial monitoring system built for purpose. Temporally resolved measurements of intensity and geometrical properties of the melt pool were extracted as well as a three-dimensional spatial mapping of the molten pool area. The results demonstrate that moving from CW to a PW regime at the transition zones to thinner sections is effective in maintaining a constant melt pool size thus avoiding heat build-up and part extrusion from the powder bed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.