Abstract

Studies were performed to evaluate whether alterations in the excretion of citrate, a metabolic precursor of bicarbonate, play a quantitatively important role in acid-base balance during bicarbonate feeding in the rat. Potassium depletion (K-DEPL), chloride depletion (Cl-DEPL), or potassium plus chloride depletion (KCl-DEPL) was produced by eliminating potassium, chloride, or potassium chloride from the diet. After 3 days of depletion, sodium bicarbonate (4,000 mueq/24 h) was added to the diet for 7 days. In all groups plasma bicarbonate concentration increased minimally during bicarbonate administration and was similar to normal controls receiving bicarbonate. In K-DEPL, citrate excretion was less than normal but bicarbonate excretion was greater than normal. In Cl-DEPL, bicarbonate excretion was less than normal but citrate excretion was greater than normal. In KCl-DEPL, bicarbonate and citrate excretion were similar to normal. Sodium bicarbonate was also administered to K-DEPL and KCl-DEPL rats in which plasma bicarbonate concentration averaged 32.9 meq/1. The reciprocal relationship between citrate and bicarbonate excretion was not altered by the profound metabolic alkalosis. Again, plasma bicarbonate concentration changed little with sodium bicarbonate administration. These studies suggest that the ability to excrete a base load remains intact despite potassium or chloride depletion or metabolic alkalosis. Complementary alterations of citrate and bicarbonate excretion play an important role in acid-base balance under these conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.