Abstract

We evaluated the impact of the base analogue inosine substituted at the 3'-terminus of broad-range 16S rRNA gene primers on the recovery of microbial diversity using terminal restriction fragment length polymorphism and clonal analysis. Oral plaque biofilms from 10 individuals were tested with modified and unmodified primer pairs. Besides a core overlap of shared terminal restriction fragments (T-RFs), each primer system provided unique information on the occurrence of T-RFs, with a higher number generally displayed with inosine primers. All clones sequenced were at least 99% identical to publicly available full-length sequences. Analysis of the corresponding primer-binding sites showed that most sequence types were 100% complementary to the unmodified primers so that the characteristic of inosine to bind with all four nucleotides was not crucial for the observed increase in microbial richness. Instead, differences in community compositions were correlated with the identity of the nearest-neighbor 3' of the primer-targeting region. By influencing the thermal stability of primer hybridization, this position may play a previously unrecognized role in biased amplification of 16S rRNA gene sequences. In conclusion, the combined use of inosine and unmodified primers enables the complementary retrieval of 16S rRNA gene types, thereby expanding the observed diversity of complex microbial communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.