Abstract

Tonic (slowly adapting) and phasic (rapidly adapting) primary afferents convey complementary aspects of haptic information to the central nervous system: object location and texture the former, shape the latter. Tonic and phasic neural responses are also recorded in all relay stations of the somatosensory pathway, yet it is unknown their role in both, information processing and information transmission to the cortex: we don't know if tonic and phasic neurons process complementary aspects of haptic information and/or if these two types constitute two separate channels that convey complementary aspects of tactile information to the cortex. Here we propose to elucidate these two questions in the fast trigeminal pathway of the rat (PrV-VPM: principal trigeminal nucleus-ventroposteromedial thalamic nucleus). We analyze early and global behavior, latencies and stability of the responses of individual cells in PrV and medial lemniscus under 1–40 Hz stimulation of the whiskers in control and decorticated animals and we use stochastic spiking models and extensive simulations. Our results strongly suggest that in the first relay station of the somatosensory system (PrV): (1) tonic and phasic neurons process complementary aspects of whisker-related tactile information (2) tonic and phasic responses are not originated from two different types of neurons (3) the two responses are generated by the differential action of the somatosensory cortex on a unique type of PrV cell (4) tonic and phasic neurons do not belong to two different channels for the transmission of tactile information to the thalamus (5) trigeminothalamic transmission is exclusively performed by tonically firing neurons and (6) all aspects of haptic information are coded into low-pass, band-pass, and high-pass filtering profiles of tonically firing neurons. Our results are important for both, basic research on neural circuits and information processing, and development of sensory neuroprostheses.

Highlights

  • Tactile perception during haptic exploration of an object along with sensory feedback for motor control during object manipulation require precise information about various complex spatiotemporal parameters such as shape, roughness, position, direction, acceleration, contact forces, etc

  • Our results strongly suggest that in the first relay station of the somatosensory system (PrV): (1) tonic and phasic neurons process complementary aspects of whisker-related tactile information (2) tonic and phasic responses are not originated from two different types of neurons (3) the two responses are generated by the differential action of the somatosensory cortex on a unique type of PrV cell (4) tonic and phasic neurons do not belong to two different channels for the transmission of tactile information to the thalamus (5) trigeminothalamic transmission is exclusively performed by tonically firing neurons and (6) all aspects of haptic information are coded into low-pass, band-pass, and high-pass filtering profiles of tonically firing neurons

  • We investigated to what extent T and Ph cells could be considered as two different information processing structures into PrV

Read more

Summary

Introduction

Tactile perception during haptic exploration of an object along with sensory feedback for motor control during object manipulation require precise information about various complex spatiotemporal parameters such as shape, roughness, position, direction, acceleration, contact forces, etc. By sweeping their fingers at 4–12 Hz across the objects, primates code the above spatiotemporal parameters in the deflections and vibrations of the skin (Johnson, 2001). The same separate channels are present in rodents’ tactile primary afferent fibers (Zucker and Welker, 1969; Duc et al, 1994; Baumann et al, 1996; Shoykhet et al, 2000; Leiser and Moxon, 2006)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.