Abstract
Germination and fermentation are age-long food processes that beneficially improve food composition. Biological modulation by germination and probiotic fermentation of cowpea, sorghum, and orange-fleshed sweet potato (OFSP) and subsequent effects on the physicochemical (pH and total titratable acidity), nutritional, antinutritional factors and health-promoting constituents/properties (insoluble dietary fibres, total flavonoid and phenolic contents (TFC and TPC) and antioxidant capacity) of the derived flours were investigated in this study. The quantification of targeted compounds (organic acids and phenolic compounds) on an ultra-high performance liquid chromatography (UHPLC) system was also done. The whole cowpea and sorghum were germinated at 35 °C for 48 h. On the other hand, the milled whole grains and beans and OFSP were fermented using probiotic mesophilic culture at 35 °C for 48 h. Among the resultant bioprocessed flours, fermented sorghum and sweet potato (FSF and FSP) showed mild acidity, increased TPC, and improved ferric ion-reducing antioxidant power. While FSF had better slowly digestible and resistant starches and the lowest oxalate content, FSP indicated better hemicellulose, lowest fat, highest luteolin, caffeic and vanillic acids. Germinated cowpea flour exhibited reduced tannin, better lactic acid, the highest crude fibre, cellulose, lignin, protein, fumaric, l-ascorbic, trans-ferulic and sinapic acids. The comparable and complementary variations suggest the considerable influence of the substrate types, followed by the specific processing-based hydrolysis and biochemical transitions. Thus, compositing the bioprocessed flours based on the unique constituent features for developing functional products from climate-smart edibles may partly be the driver to ameliorating linked risk factors of cardiometabolic diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.