Abstract

There is strong interest in realizing genomic molecular diagnostic platforms that are label-free, electronic, and single-molecule. One attractive transducer for such efforts is the single-molecule field-effect transistor (smFET), capable of detecting a single electronic charge and realized with a point-functionalized exposed-gate one-dimensional carbon nanotube field-effect device. In this work, smFETs are integrated directly onto a custom complementary metal-oxide-semiconductor chip, which results in an array of up to 6000 devices delivering a measurement bandwidth of 1 MHz. In a first exploitation of these high-bandwidth measurement capabilities, point functionalization through electrochemical oxidation of the devices is observed with microsecond temporal resolution, which reveals complex reaction pathways with resolvable scattering signatures. High-rate random telegraph noise is detected in certain oxidized devices, further illustrating the measurement capabilities of the platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call