Abstract

AbstractOwing to the difficulty in comprehensively characterizing nanocrystal (NC) surfaces, clear guidance for ligand design is lacking. In this work, a series of bidentate bis(pyridine) anthracene isomers (2,3‐PyAn, 3,3‐PyAn, 2,2‐PyAn) that differ in their binding geometries were designed to find the best complementary fit to the NC surface. The efficiency of triplet energy transfer (TET) from the CdSe NC donor to a diphenylanthracene (DPA) acceptor mediated by these isomers was used as a proxy for the efficacy of orbital overlap and therefore ligand binding. 2,3‐PyAn, with an intramolecular N–N distance of 8.2 Å, provided the best match to the surface of CdSe NCs. When serving as a transmitter for photon upconversion, 2,3‐PyAn yielded the highest upconversion quantum yield (QY) of 12.1±1.3 %, followed by 3,3‐PyAn and 2,2‐PyAn. The TET quantum efficiencies determined by ultrafast transient absorption measurements showed the same trend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.