Abstract
An organic-inorganic hybrid superlattice with near perfect synergistic integration of organic and inorganic constituents was developed to produce properties vastly superior to those of either moiety alone. The complementary hybrid superlattice is composed of multiple quantum wells of 4-mercaptophenol organic monolayers and amorphous ZnO nanolayers. Within the superlattice, multichannel formation was demonstrated at the organic-inorganic interfaces to produce an excellent-performance field effect transistor exhibiting outstanding field-effect mobility with band-like transport and steep subthreshold swing. Furthermore, mutual stabilizations between organic monolayers and ZnO effectively reduced the performance degradation notorious in exclusively organic and ZnO transistors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.