Abstract

In mouse embryos, the Zfhx1 transcription factor genes, Sip1 and deltaEF1, are expressed in complementary domains in many tissues. Their possible synergism in embryogenesis was investigated by comparing the phenotype of Sip1-/-;deltaEF1-/- double homozygotes with single homozygous embryos. Unexpectedly, in Sip1-/- embryos deltaEF1 was ectopically activated, suggesting a negative regulation of deltaEF1 expression by Sip1. Sip1-/-;deltaEF1-/- embryos were similar to Sip1-/- embryos in short somite production and developmental arrest around E8.5, but showed more severe defects in dorsal neural tube morphogenesis accompanied by a larger reduction of Sox2 expression, ascribable to the loss of the ectopic deltaEF1 expression. Sip1+/-;deltaEF1-/- embryos develop various morphological defects after E10 that were absent in deltaEF1-/- embryos even in tissues without significant overlap of Sip1 and deltaEF1 expression, and arrested during mid gestation earlier than deltaEF1-/- embryos. These findings indicate that complex synergistic interactions occur between Zfhx1 transcription factor genes during mouse embryogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.